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Abstract
In this paper, we explore some examples in �ndinging the global values of a total squared

distances among non-intersecting curves in the plane and surfaces in the space. We hope the
geometric interpretations will help studdents appreciate the use of Lagrange Multipliers Method
and concepts learned from Linear Algebra.

1 Introduction
Throughout this paper, curves are non-intersecting in the plane R2 and surfaces are non-intersecting
in the space R3: In Sections 2 and 3, we give motivations and examples of �nding the global squared
distance between two curves or surfaces. Finding the global squared distance between two nonconvex
surfaces has been researched in [2], but the method is applied there only to some special cases. For
general curves and surfaces, the motivations described in Sections 2 and 3 are still crucial for students
to comprehend how Lagrange Multipliers can be viewed geometrically. In Sections 4 and 5, we
extend this idea further: We give three disjoint curves, C1; C2 and C3 respectively, and we want to
�nd the global value of the total squared distances from C1 to C2 and C1 to C3: We extend the idea
from 2D to 3D on convex surfaces. We are given four convex surfaces S1; S2; S3 and S4, we would
like to �nd the the global value of the total squared distances from S1 to S2; S1 to S3; and S1 to S4:
The method of �nding the extremum of a total squared distances is an application of Theorem 4 and is
proved in Corollary 5. Theorem 4 is a generalization of Corollary 5. For simplicity, we will calculate
the squared distance jx� yj2 instead of jx� yj ; where x and y are in R2 or R3.

2 Motivations in 2-D
Let curves C1 and C2 be two non-intersecting curves of forms f(x; y) = 0 (or y = f(x)) and
g(x; y) = 0 (or y = g(x)) respectively. If we restrict the ranges for x and y for both curves to be
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closed and bounded sets, the global maximum and minimum exist by the Extreme Value Theorem.
(We remark that if both C1 and C2 are lines, they have to be parallel in our discussion here.) By
following the idea we described in the video clip (see [6]), which uses the software package [ClassPad]
for demonstration), we note that a necessary conditions for the squared distance AB; where A 2 C1
and B 2 C2; to be either the minimum or maximum is that:

�!
AB is perpendicular to the tangent line at A and
�!
AB is perpendicular to the tangent line at B: (1)

We demonstrate this observation using the following example.

Example 1 Let f(x) = sin(x) + 5 and g(x) = � cos (x� 1). We discuss the maximum and mini-
mum squared distances between y = f(x) and y = g(x) in the closed interval of [�2; 5] � [�4; 8].

Case 1. By using (1) and with the help of Maple (see [7]), we found that when

x1 = 1:685610214 and f(x1) = 5:993416123;
x2 = :8851861123; and g(x2) = �:9934161229:

The squared distance between (x1; f(x1)) and (x2; g(x2) is about 49:45650357:We sketch the graphs
of y = f(x); and y = g(x); the line segment connecting (x1; f(x1)) and (x2; g(x2); the tangent line
at x = x1 and the tangent line at x = x2 together as follows. This case turns out to produce the global
maximum squared distance.

Figure 1:Global Maximum Squared Distance in[�2; 5]� [�4; 8]
Case 2. When

x5 = �1:684808257 and f(x5) = 4:006492323;
x6 = �2:027580723; and g(x6) = :9935076771;

the squared distance between (x5; f(x5)) and (x6; g(x6) is about 9:195569440:We sketch the graphs
of y = f(x); and y = g(x); the line segment connecting (x5; f(x5)) and (x6; g(x6); tangent line at
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x = x5 and tangent line at x = x6 together as shown in Figure 2.

Figure 2. Global Minimum Squared Distance in [�2; 5]� [�4; 8]
This turns out to be the case producing the global minimum squared distance.

Remark: We note that (1) only produces the relative extremum for the squared distance function,
we could get a lot more possibilities than two cases we mentioned above. For example, the following
set of points satis�es (1):

x3 = 3:421927911 and f(x3) = 4:723322166;
x4 = �:8511315841; and g(x4) = :2766778338:

The squared distance between (x3; f(x3)) and (x4; g(x4) is roughly 38:03168327 only represents
a relative extremum for the squared distance function. We sketch the graphs of y = f(x); and
y = g(x); the line segment connecting (x3; f(x3)) and (x4; g(x4); tangent line at x = x3 and tangent
line at x = x4 together as follows:

Figure 3. Relative Extremum Squared Distance in [�2; 5]� [�4; 8]
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Exercise 1. Verify that the following set of points produces only a relative extremum for Example
1. ��

�:4955520442
f(�:4955520442)

�
;

�
3:066348371
g(3:066348371)

��
;��

1:030769192
f(1:030769192)

�
;

�
3:066348371
g(3:066348371)

��
;��

1:685610214
f(1:685610214)

�
;

�
:8851861123
g(:8851861123)

��
:

3 Motivations in 3-D
Let f and g be continuously differentiable functions in their respective closed and bounded domains
(which are subsets of R3). Here we describe how we �nd the relative extremum squared distance
between two convex surfaces satisfying

f(x; y; z) = 0 and g(x; y; z) = 0: (2)

Following what we have described in two dimensional case, we see that if A = (x1; x2; x3) is on the
surface f(x; y; z) = 0 and B = (y1; y2; y3) is on the surface g(x; y; z) = 0; a necessary condition for
�nding such extremum distance is to have

�!
AB is parallel to the normal vector of the tangent plane at A and
�!
AB is parallel to the normal vector of the tangent plane at B: (3)

More speci�cally, if we use rf = (fx; fy; fz) and rg = (gx; gy; gz) to denote the gradients of f and
g respectively, the following conditions should be met.

�!
AB = �1 (rf) at A;
�!
AB = �2 (rg) at B;
f(x1; x2; x3) = 0; and
g(y1; y2; y3) = 0: (4)

Simply put, the vectors (rf) at A and (rg) at B are parallel. The above set of equations in (4) is
equivalent to the followings:

y1 � x1 = �1 (fx)(x1;x2;x3) ; (5)
y2 � x2 = �1 (fy)(x1;x2;x3) ; (6)
y3 � x3 = �1 (fz)(x1;x2;x3) ; (7)
y1 � x1 = �2 (gx)(y1;y2;y3) ; (8)
y2 � x2 = �2 (gy)(y1;y2;y3) ; (9)
y3 � x3 = �2 (gz)(y1;y2;y3) ; (10)

f(x1; x2; x3) = 0 and g(y1; y2; y3) = 0: (11)
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It is easy to verify that equations (5)-(11) produce the identical result if we apply the Lagrange Multi-
plier Method in solving this problem. In other words, we want to minimize or maximize the squared
distance jx� yj2, which is subject to both f(x) = 0 and g(y) = 0: Speci�cally, if we write

L(x;y; �1; �2) = jx� yj2 + �1f(x)+�2g(y) (12)

or

L(x1; x2; x3; y1; y2; y3; �1; �2) = (x1 � y1)2 + (x2 � y2)2 + (x3 � y3)2 +
�1f(x1; x2; x3) + �2g(y1; y2; y3); (13)

Then it follows from the Lagrange Multiplier Method that a necessary condition to achieve the critical
distance is to have

rL = 0: (14)

We demonstrate this effect by using the following example.

Example 2 Let f(x; y; z) = sinx cos y�2�z and g(x; y; z) = x2+y2�z: If we restrict the domain
to be [�2; 2] � [�2; 2] � [�4; 4] for both functions, we are interested in �nding the global minimum
of the squared distance between f(x; y; z) = 0 and g(x; y; z) = 0:

By using equation (12) and setting rL = 0; the computation from Maple shows one of the
following solutions below: 24 x1x2

x3

35 =

24 :9776334541
0

�1:170823173

35 ; and
24 y1y2
y3

35 =

24 :2794931976
0

:07811644752

35 :
The squared distance jx� yj2 is 2:047249995: It follows from our computation that

(rf) at (x1; x2; x3) = (:5589863953; 0;�1), and (15)
(rg) at (y1; y2; y3) = (:5589863952; 0;�1]); (16)

which shows that (rf) at (x1; x2; x3) is (almost) identical to (rg) at (y1; y2; y3) (subject to some
computation round off error). The graph below shows the solution set will achieve the global mini-
mum distance for these two surfaces.
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Figure 4. The shortest distance between two surfaces in a closed and bounded domain

We extend the ideas described in Examples 1 and 2 to the following scenario. First, we denote
the distance between two points A and B in the space by kABk :We are given four convex surfaces
in the space, represented by the orange, yellow, blue and purple surfaces which we call them S1; S2
S3 and the S4 respectively. We want to �nd points A;B;C and D on S1; S2; S3 and S4 respectively
so that the kABk+ kACk+ kADk achieves its minimum.

Figure 5. The shortest total squared distances among four convex surfaces

It follows from our discussions in 2-D and 3-D above that the followings should be met.

1. The vector AB should be parallel to the normal vector of the surface S2 at B. This is equivalent
to �!

AB = �2 (rS2 at B) for some �2: (17)
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2. The vector AC should be parallel to the normal vector of the surface S3 at C. This is equivalent
to �!

AC = �3 (rS3 at C) for some �3: (18)

3. The vector AD should be parallel to the normal vector of the surface S4 atD:This is equivalent
to ��!

AD = �4 (rS2 at D) for some �4: (19)

4. To achieve the minimum of kABk+ kACk+ kADk we should also place the points A so that
the normal vector of S1 at A is a linear combination of

�!
AB;

�!
AC and

��!
AD: This is equivalent to

say we can �nd �1 so that

�1 (rS1 at A) = � (2rS2 at B) + �3 (rS3 at C) + �4 (rS2 at D) : (20)

We shall proceed proving our observations in Corollary 5 of Section 4.

4 Applications of Lagrange Theorem
We remind readers about the Lagrange Multiplier Method in Theorem 3 (without proof), which can
be found in many textbooks. We shall see that �nding the global values of a total squared distances is
a special case of the Theorem 4.

Theorem 3 We assume that f; g are continuously differentiable: Rn ! R: Suppose that we want
to maximize or minimize a function of n variables f(x) = f(x1; x2; :::; xn) for x = (x1; x2; :::; xn)
subject to p constraints g1(x) = c1; g2(x) = c2; :::; and gp(x) = cp: The necessary condition of �nding
the relative maximum or minimum of f(x) subject to the constraints g1(x) = c1; g2(x) = c2; :::; and
gp(x) = cp that is not on the boundary of the region where f(x) and gi(x) are de�ned can be found
by solving the system

@

@xi

 
f(x) +

pX
j=1

�jgj(x)

!
= 0; 1 � i � n; (21)

gj(x) = cj; 1 � j � p: (22)

We writerf(x) =
�
@

@x1
f(x);

@

@x2
f(x); :::;

@

@xn
f(x)

�
: If x = x0 is an extremum for above system,

then

rf(x0) =
pX
j=1

�jrgj(x0): (23)

We now consider a slight variation here. We remark that the Theorem 4 below is a generalization
of Corollary 5. However, Corollary 5 is inspired by �nding the global value of a squared distance
function.
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We assume that f : Rnp ! R; gi : Rn ! R; i = 1; 2:::p; are continuously differentiable in their
respective domains. Our objective is to maximize or minimize the function

f(x1;x2; ; ; ;xp) = f(x11; x
1
2; :::; x

1
n; x

2
1; x

2
2; :::; x

2
n; :::x

p
1; x

p
2; :::; x

p
n)

for xi = (xi1; x
i
2; :::; x

i
n); i = 1; 2; :::p (24)

subject to p constraints g1(x1) = c1; g2(x2) = c2; :::; and gp(xp) = cp:

Theorem 4 A necessary condition of �nding the relative maximum or minimum of f(x1;x2; ; ; ;xp)
subject to the constraints g1(x1) = c1; g2(x2) = c2; :::; and gp(xp) = cp that is not on the boundary
of the region where f(x1;x2; ; ; ;xp) and gi(xi) are de�ned can be found by solving the system

@

@xi

 
f(x1;x2; ; ; ;xp) +

pX
j=1

�jgj(xj)

!
= 0; 1 � i � p; (25)

gj(xj) = cj; 1 � j � p: (26)

If
pX
i=1

@

@xi
(f(x1;x2; ; ; ;xp)) = 0; (27)

and x = x0 = (x�1;x�2; ; ; ;x�p) is an extremum, then we have
pX
j=1

�j
@

@xi

�
gj(x

�
j)
�
= 0: (28)

Proof: We observe that
@

@xi
f(x1;x2; ; ; ;xp) = ��i

@

@xi
gi(xi); i = 1; 2; :::p:

If
Pp

i=1

@

@xi
(f(x1;x2; ; ; ;xp)) = 0; and x = x0 = (x�1;x�2; ; ; ;x�p) is an extremum, then

pX
j=1

�j
@

@xi

�
gj(x

�
j)
�
= 0: (29)

Corollary 5 If the total squared distances function f(x1;x2; ; ; ;xp) = jx1 � x2j2 + jx1 � x3j2 +
::: jx1 � xpj2 has a global value, where xi = (xi1; xi2; :::; xin); i = 1; 2; :::p; subject to p constraints

g1(x1) = c1; g2(x2) = c2; :::; and gp(xp) = cp; (30)

at x0 = (x�1; x
�
2; ; ; ; x

�
p) in its closed and bounded domain. Then we can �nd coef�cients, �j; j =

1; 2; :::p; such that

�1rg1(x0) =
pX
j=2

�jrgj(x0): (31)

Proof: We set

L(x1;x2; ; ; ;xp) = jx1 � x2j2 + jx1 � x3j2 + ::: jx1 � xpj2 +
pX
j=1

�jgj(xj): (32)
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By setting rL = 0; we observe that fx1;x2; ; ; ;xpg are such that g1(x1) = c1; g2(x2) = c2; :::; and
gp(xp) = cp: Furthermore,

2px1 � 2
pX
j=2

xj = ��1rg1 (33)

�2(x1 � x2) = �2rg2 (34)
::: (35)

�2(x1 � xp) = �prgp; and (36)

The proof follows directly by adding up the left hand sides and right hand sides of equations
(33)-(36) separately.

Remark: We note that if we are given n + 1 vectors in Rn; they form a linearly dependent set:
The Corollary 5 says that �nding an extremum for the the total distance squared function in p = n+1
case, the vector rg1(x0) can be written as a linear combination of the remaining gradient vectors at
the critical point.
We give some examples to demonstrate the use of Theorem 4 and Corollary 5 in the next section.

5 Examples in 2-D and 3-D
First we describe how Corollary 5 can be used in 2-D and 3-D cases.

Example 5 Let g1(x1; y1) = sin x1� y1; g2(x2; y2) = x22� y2+2 and g3(x3; y3) = (x3� 3)2+(y3�
3)2� 1 and we are given three disjoint curves, C1; C2; and C3 given by g1(x1; y1) = 0; g2(x2; y2) = 0
and g3(x3; y3) = 0 respectively. We would like to �nd the shortest total distances from C1 to C2 and
C1 to C3 in the closed and bounded set of [�2; 5] � [�1; 4]: We show the curves C1; C2; and C3 in
Figure 6 below.

Figure 6. Three non-intersecting curves C1; C2; and C3
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Our objective is to minimize

f(x1; y1; x2; y2; x3; y3) = (x1 � x2)2 + (x1 � x3)2 + (y1 � y2)2 + (y1 � y3)2 (37)
subject to g1(x1; y1) = 0; g2(x2; y2) = 0 and g3(x3; y3) = 0: (38)

We write xi = (xi; yi); i = 1; 2; 3: It is easy to verify that
P3

i=1

@

@xi
(f(x1;x2;x3)) = 0, and it

follows from Corollary 5 that
P3

i=1 �i
@

@xi
gi(xi) = 0: Moreover, we have

P3
j=1 �jrgj(x0) = 0 if

x0 = (x1; y1; x2; y2; x3; y3) is an extremum of f: Consequently, we may write

rg1(x0) = �
�2
�1
rg2(x0)�

�3
�1
rg3(x0); (39)

when �1 6= 0: This equation says that the minimum occurs when the normal vector for C1 at x0
is a linear combination of the the normal vectors for C2 and C3 at x0. We shall demonstrate this
geometrically. First, we show the result we obtained from Maple (see [9]). We obtain the shortest
total distances occurs when

A =

�
x1
y1

�
=

�
1:503078740
:9977080403

�
2 C1;

B =

�
x2
y2

�
=

�
:4425626436
2:195861693

�
2 C2;

C =

�
x3
y3

�
=

�
2:401228926
2:199079779

�
2 C3; and24 �1�2

�3

35 =

24 �4:7990507832:396307306
1:499989270

35 :
It follows from our computation that indeed �1 (rg1 jat A ) = �2

�!
AB + �3

�!
AC; which can be shown

below.

Figure 7. The shortest total squared distances among three curves

Here we demonstrate the use of Corollary 5 in 3-D.
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Example 6 Let g1(x; y; z) = x2+y2+z2�1; g2(x; y; z) = x2+(y�3)2+(z�1)2�1; g3(x; y; z) = z�
(x2+y2)�2 and g4(x; y; z) = (4(x� 3) + (y � 3) + (z � 1)) (x�3)+((x� 3) + 4(y � 3) + (z � 1)) (y�
3)+((x� 3) + (y � 3) + 4(z � 1)) (z�1)�3:We are given four disjoint convex surfaces, S1; S2; S3
and S4 given by g1(x; y; z) = 0; g2(x; y; z) = 0; g3(x; y; z) = 0 and g4(x; y; z) = 0 respectively. We
would like to �nd the shortest total squared distances from S1 to S2; S1 to S3;and S1 to S4 in the
closed and bounded domain of [�3; 4]� [�2; 5]� [�3; 5]:We show the surfaces S1; S2; S3; and S4 in
Figure 8.

Figure 8. Four convex surfaces
If we use the notation of x1 = (x11; x

1
2; x

1
3); x2 = (x21; x

2
2; x

2
3); x3 = (x31; x

3
2; x

3
3), and x4 =

(x41; x
4
2; x

4
3); we want to �nd the minimum of

f(x1;x2;x3;x4) = jx1 � x2j2 + jx1 � x3j2 + jx1 � x4j2 (40)

subject to g1(x1) = 0; g2(x2) = 0; g3(x3) = 0 and g4(x4) = 0: It is easy to verify (with the help of a

CAS-Maple) that
P4

i=1

@

@xi
(f(x1;x2;x3;x4)) = 0 and we have

P4
j=1 �jrgj(x0) = 0 for some x0

in R3: It follows from Corollary 5 that if �1 6= 0; we may write

rg1(x0) = �
�2
�1
rg2(x0)�

�3
�1
rg3(x0)�

�4
�1
rg3(x0): (41)

We use Maple for computation and we obtain the shortest total squared distances occurs when

x1 =

24 :3966581137:7009795128
:5926972781

35 ;x2 =
24 :16748817042:029242761
:8280171630

35
x3 =

24 :1017095600:1797424919
2:042652198

35 ;x4 =
24 2:3876960122:486312830
1:099333105

35 ; and
2664
�1
�2
�3
�4

3775 =

2664
3:698195879
1:368275399
�2:899909840
:6952991848

3775 : (42)
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We show the identify (41) geometrically below:

Figure 9. The shortest total squared distances among four convex surfaces
Remark: It is understood that Corollary 5 gives only a necessary condition when optimizing a

function. For the previous example, we may obtain another set of solutions as follows:

x1 =

24 �:3189240652�:7776125973
�:5418543061

35 ;x2 =
24 :077926984163:923034632
1:376741893

35
x3 =

24 �:05209975982�:1270315852
2:018851409

35 ;x4 =
24 2:5217915522:415696446
:9328295271

35 ; and
2664
�1
�2
�3
�4

3775 =

2664
�10:98816726
�5:092601153
�5:121411430
1:107790413

3775 : (43)

This clearly does not give the shortest square distance, which can be seen from the �gure below,
where the point x1 starts from the back of S1 (yellow ball).

Figure 10. The largest total squared distances among four convex surfaces
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5.1 Discussion
The Corollary 5 describes a nice geometric interpretation between the global values of the total
squared distances function f and the gradient vectors at those critical points satisfying side condi-
tions. When we replace f by an arbitrary function in Theorem 4, we can only focus on the relationship
between equations (27) and (28).
We demonstrate this by using the following example; we use x1 = (x11; x

1
2); x2 = (x21; x

2
2) and

x3 = (x31; x
3
2) to denote points in R2: In the next example, we want to minimize a general function

f(x1;x2;x3) subject to g1(x1) = 0; g2(x2) = 0 and g3(x3) = 0; which represent three curves in R2:

Example 7 Let g1(x11; x12) = x12+(x11)
2
; g2(x

2
1; x

2
2) = (x

2
1)
2�x22+2 and g3(x31; x32) = (x31�3)2+(x32�

3)2�1 and we are given three disjoint curves, C1; C2; and C3 given by g1(x11; x12) = 0; g2(x21; x22) = 0
and g3(x31; x32) = 0 respectively. We �rst de�ne

f1(x
1
1; x

1
2; x

2
1; x

2
2) =

�
x21 � x11

�3
+
�
x22 � x12

�2 and (44)

f2(x
1
1; x

1
2; x

3
1; x

3
2) =

�
x31 � x11

�3
+
�
x32 � x12

�2 (45)

We would like to minimize the function

f(x11; x
1
2; x

2
1; x

2
2; x

1
1; x

1
2; x

3
1; x

3
2) = f1(x

1
1; x

1
2; x

2
1; x

2
2)) + f2(x

1
1; x

1
2; x

3
1; x

3
2) (46)

subject to g1(x11; x12) = 0; g2(x
2
1; x

2
2) = 0 and g3(x31; x32) = 0 in the closed and bounded set of

[�2; 4]� [�2; 4]:

We note that the function f is being twisted a bit from the total squared distances function and

yet satisfying
P3

i=1

@

@xi
(f(x1;x2;x3)) = 0. If x0 = (x�1;x�2;x�3) is a critical point for f; we do not

expect rg1(x0) to be written as a linear combination of rg2(x0) and rg3(x0) in this case; but we
do have the equality of

P3
j=1 �j

@

@xi

�
gj(x

�
j)
�
= 0 as expected from Theorem 4. We use Maple for

computation (see [11]) to obtain the following information:

x�1 =

�
:4815982352
�:2319368601

�
;x�2 =

�
�:1213699858
2:014730673

�
;x�3 =

�
2:157465703
2:461357300

�
; and

�1 = 9:879923388; �2 = 4:493335067; �3 = 5:000149748; and f(x0) = 16:78885390: (47)

We demonstrate the solution set fx�1;x�2;x�3g and its corresponding curves (g1(x1) = 0 in blue,
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g2(x2) = 0 in red and g3(x3) = 0 in green) by using the following Figure 11.

Figure 11. The objective function is not the total squared distances function

Finally, we use the following example to show that the objective function f satisfying the condi-
tion of Theorem 5 can be very arbitrary. We use the notation of x1 = (x11; x12; x13); x2 = (x21; x22; x23);
x3 = (x

3
1; x

3
2; x

3
3), and x4 = (x41; x42; x43): Let g1(x1); g2(x2); g3(x3); and g4(x4) be de�ned in Example

6. We will explore some but not all critical points for

f(x1;x2;x3;x4) =
�
x11 � x12

�2
+ (x12 � x13)2 + (x22 � x23)� e2x

2
1�2x22 (48)

+
�
x32 � x33

�2
+ (x41 � x43) + 2ex

4
1�x42 ; (49)

subject to g1(x1) = 0; g2(x2) = 0; g3(x3) = 0; and g4(x4) = 0, in the closed and bounded domain
of [�3; 4]� [�2; 5]� [�3; 5] for x1;x2;x3; and x4: Notice that the function f is picked arbitrarily so
the condition (27) is satis�ed, which can be veri�ed by Maple easily. We further note that the side
condition of g1(x1) = 0 representing a sphere centered at origin and with radius 1: By restricting
the domain of x11 to be [�1; 1]; and with the help of Maple, we show the following cases. Due to
complexity of the problem and possible computation limitations from Maple, we shown only the
following critical points (see [12]).
Case 1. When

x�1 =

24 0:7071067812
0

�0:7071067812

35 ;x�2 =
24 0:014913656052:285554355

1:699531989

35
x�3 =

24 0
0:5
2:25

35 ;x�4 =
24 3:744185903
2:336976634
0:9188374623

35 ;
2664
�1
�2
�3
�4

3775 =

2664
�1

0:7147635962
�3:5

�2:053492552

3775 ; and f(x�1;x�2;x�3;x�4) = 15:63229233: (50)
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We note that
P4

j=1 �j
@

@xi

�
gj(x

�
j)
�
= 0 in this case; however, as expected for x0 = (x�1;x�2;x�3;x�4);since

f is not the distance function,
P4

j=1 �jrgj(x0) 6= 0; the zero vector in R3:
Case 2. When

x�1 =

24 :4082482905
�:8164965809
:4082482905

35 ;x�2 =
24 �:00084956224533:707531180

:2933183827

35
x�3 =

24 0
0:5
2:25

35 ;x�4 =
24 2:1896855513:318307528
1:492006921

35 ;
2664
�1
�2
�3
�4

3775 =

2664
�3

�:7075322009
�3:5

:3387486223

3775 ; and f(x�1;x�2;x�3;x�4) = 10:82074775: (51)

Case 3. The following gives us only a critical point for f:

x�1 =

24 :7071067812
0

�:7071067812

35 ;x�2 =
24 �:00084956224533:707531180

:2933183827

35
x�3 =

24 0
0:5
2:25

35 ;x�4 =
24 2:1896855513:318307528
1:492006921

35 ;
2664
�1
�2
�3
�4

3775 =

2664
�1

�:7075322009
�3:5

:3387486223

3775 ; and f(x�1;x�2;x�3;x�4) = 8:8207477557572: (52)

Case 4. The following gives us another critical point for f:

x�1 =

24 :4082482905
�:8164965809
:4082482905

35 ;x�2 =
24 :014913656052:285554355
1:699531989

35
x�3 =

24 0
0:5
2:25

35 ;x�4 =
24 2:1896855513:318307528
1:492006921

35 ;
2664
�1
�2
�3
�4

3775 =

2664
�3

:7075322009
�3:5

:3387486223

3775 ; and f(x�1;x�2;x�3;x�4) = 7:982498677: (53)
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In summary, we may replace the distance function from a surface to another one by a curve (in an
appropriate dimension) connecting two surfaces instead of a straight line. Author believes that there
will be some applications regarding the use of Theorem 4.

6 Conclusion
It is known that �nding minimum distance between two surfaces has many applications in robotic
engineering (see [3]). Traditionally when technological tools are not available, students may �nd
applying Lagrange Multiplier Method in solving optimization problems dif�cult; not only due to
complicated algebraic manipulation nature but also they often do not fully understand the geometric
interpretation behind the method. This paper demonstrates that optimization problems can be made
interesting if teachers inspire students with geometric motivation. Moreover, a computer algebra
system allows us to concentrate on the main mathematics concepts on one hand and carry out the
complicated computations in the mean time. This paper shows examples how we can help students to
integrate geometric intuitions, concepts learned in Linear Algebra, with Lagrange Multipliers Method
learned in Multi-variable Calculus.
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